Selasa, 28 Mei 2013

ABOUT Random Algorithm number

Multiplicative Congruential Method:
Basic Relationship
Xi+1 = a Xi (mod m), where a >= 0  and  m >= 0
Most natural choice for m is one that equals to the capacity of a computer word.
m = 2b (binary machine), where b is the number of bits in the computer word.
m = 10d (decimal machine), where d is the number of digits in the computer word.

The max period(P) is:
For m a power of 2, say m = 2b, and c /= 0, the longest possible period is P = m = 2b , which is achieved provided that c is relatively prime to m (that is, the greatest common factor of c and m is 1), and a = 1 + 4k, where k is an integer.
For m a power of 2, say m = 2b, and c = 0, the longest possible period is P = m / 4 = 2b-2 , which is achieved provided that the seed X0 is odd and the multiplier, a, is given by a = 3 + 8k or a = 5 + 8k, for some k = 0, 1

For m a prime number and c = 0, the longest possible period is P = m - 1, which is achieved provided that the multiplier, a, has the property that the smallest integer k such that ak - 1 is divisible by m is k = m - 1,

(Example)
Using the multiplicative congruential method, find the period of the generator for a = 13, m = 26, and X0 = 1, 2, 3, and 4. The solution is given in next slide. When the seed is 1 and 3, the sequence has period 16. However, a period of length eight is achieved when the seed is 2 and a period of length four occurs when the seed is 4.

Period Determination Using Various seeds

    i    Xi     Xi     Xi     Xi


    0      1      2      3      4
    1    13    26    39    52  
    2    41    18    59    36  
    3    21    42    63    20  
    4    17    34    51      4  
    5    29    58    23      
    6    57    50    43      
    7    37    10    47      
    8    33      2    35      
    9    45      7      
   10      9     27      
   11    53     31  
   12    49     19  
   13    61     55  
   14    25     11  
   15      5     15  
   16      1      3  

Tidak ada komentar:

Posting Komentar